Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
نویسنده
چکیده
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
منابع مشابه
Hamilton decompositions of line graphs of some bipartite graphs
Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).
متن کاملHamilton decompositions of some line graphs
The main result of this paper completely settles Bermond's conjecture for bipartite graphs of odd degree by proving that if G is a bipartite (2k+1)-regular graph that is Hamilton decomposable, then the line graph, L(G), of G is also Hamilton decomposable. A similar result is obtained for 5-regular graphs, thus providing further evidence to support Bermond's conjecture.
متن کاملApproximate Hamilton Decompositions of Robustly Expanding Regular Digraphs
We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r−o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the ‘robust’ outneighbourhood of S is a little larger than S. T...
متن کاملSymmetry and optimality of disjoint Hamilton cycles in star graphs
Multiple edge-disjoint Hamilton cycles have been obtained in labelled star graphs Stn of degree n-1, using number-theoretic means, as images of a known base 2-labelled Hamilton cycle under label-mapping automorphisms of Stn. However, no optimum bounds for producing such edge-disjoint Hamilton cycles have been given, and no positive or negative results exist on whether Hamilton decompositions ca...
متن کاملNeighbourly Irregular Derived Graphs
A connected graph G is said to be neighbourly irregular graph if no two adjacent vertices of G have same degree. In this paper we obtain neighbourly irregular derived graphs such as semitotal-point graph, k^{tℎ} semitotal-point graph, semitotal-line graph, paraline graph, quasi-total graph and quasivertex-total graph and also neighbourly irregular of some graph products.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 12 شماره
صفحات -
تاریخ انتشار 1995